Bayesian Inference for Linear Models Subject to Linear Inequality Constraints
نویسنده
چکیده
The normal linear model, with sign or other linear inequality constraints on its coefficients, arises very commonly in many scientific applications. Given inequality constraints Bayesian inference is much simpler than classical inference, but standard Bayesian computational methods become impractical when the posterior probability of the inequality constraints (under a diffuse prior) is small. This paper shows how the Gibbs sampling algorithm can provide an alternative, attractive approach to inference subject to linear inequality constraints in this situation, and how the GHK probability simulator may be used to assess the posterior probability of the constraints. The editor and a referee, who bear no responsibility for any errors or omissions, have provided suggestions that improved the paper. This work was supported in part by National Science Foundation Grant SES-9210070. The views expressed in this paper are those of the author and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملLinear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints
In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملOptimization of linear objective function subject to Fuzzy relation inequalities constraints with max-product composition
In this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.Simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. Also, an algorithm and somenumerical and applied exa...
متن کاملInference with Linear Equality and Inequality Constraints Using R: The Package ic.infer
In linear models and multivariate normal situations, prior information in linear inequality form may be encountered, or linear inequality hypotheses may be subjected to statistical tests. R package ic.infer has been developed to support inequality-constrained estimation and testing for such situations. This article gives an overview of the principles underlying inequality-constrained inference ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995